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Abstract

Dissemination of carbapenem-resistant Klebsiella pneumoniae poses a threat to the suc-

cessful treatment of bacterial diseases and increases the need for new antibacterial agents

development. The objective of this study was to determine the antimicrobial activity of carva-

crol against multidrug-resistant K. pneumoniae. Carbapenemase production was detected

by MALDI-TOF. The PCR and sequencing showed that the blaKPC-2, blaOXA-48, blaNDM-1,

blaCTX-M-8 genes were present in carbapenem-resistant K. pneumoniae strains. The poly-

myxin-resistant K. pneumoniae strain exhibited alterations in mgrB gene. The antimicrobial

activity of carvacrol was evaluated in vitro using broth microdilution and time-kill methods.

For this, carbapenem-resistant K. pneumoniae and polymyxin-resistant strains, were evalu-

ated. The in vitro results showed that carvacrol had antimicrobial activity against all isolates

evaluated. The survival curves showed that carvacrol eradicated all of the bacterial cells

within 4 h. The antimicrobial effect of carvacrol in vivo was determined using a mouse model

of infection with Klebsiella pneumoniae carbapenemase (KPC). The treatment with carva-

crol was associated with increased survival, and significantly reduced bacterial load in peri-

toneal lavage. In addition, groups treated with carvacrol, had a significant reduction in the

total numbers of white cell and significantly increased of platelets when compared to the

untreated group. In vivo and in vitro studies showed that carvacrol regimens exhibited signif-

icant antimicrobial activity against KPC-producing K. pneumoniae, making it an interesting

candidate for development of alternative treatments.

Introduction

Multidrug-resistant (MDR) infections are considered a major public health problem [1, 2].

The emergence of MDR bacteria and the lack of new antibiotics is a worrying prospect [3]. A
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recent report suggests that failing to control drug-resistant infections may cause an excess of

10 million deaths per year and cost up to US$100 trillion by 2050 [4]. Carbapenem-resistant

Klebsiella pneumoniae strains are frequent cause of healthcare-associated infections and hospi-

tal-associated outbreaks [5]. Carbapenem resistance in these pathogens is one of the main

causes of morbidity and mortality, and represents a serious health problem worldwide, since it

limits therapeutic options for treating infections [1, 6]. Thus, the global spread of MDR has

resulted in increased use of polymyxin with the inevitable risk of emerging resistance [7].

According to the World Health Organization (WHO), the control of the spread of antibi-

otic resistance remain a priority, as well as, development of new therapies against these bacte-

ria [8]. Therefore, the increase in antibiotic-resistant bacteria has revived interest in the study

of plant materials as sources of new compounds as alternative therapeutic agents to control

pathogenic microorganisms [9, 10]. A major group of plant antimicrobial compounds is repre-

sented by essential oils, which consist of complex mixtures of volatile secondary metabolites

[11]. Therefore, bioactive compounds extracted from essential oils are promising antimicrobi-

als [12].

The phenolic monoterpene carvacrol [2-Methyl-5-(1-methylethyl) phenol, isomeric with

thymol] is a essential component of the essential oils of plants of the Labiatae family, including

Origanum and Thymus and has emerged for its wide spectrum of activity [10]. Some studies

have reported their pharmacological activities, such as anti-inflammatory effects, antioxidant,

antitumor, analgesic, anti-hepatotoxic, insecticidal and antimicrobial properties [9, 13–17].

This study evaluated the antimicrobial potential of carvacrol in vitro and in vivo against multi-

drug-resistant K. pneumoniae strains.

Material and methods

Chemicals

Carvacrol (2-methyl-5-[1-methylethyl] phenol); lot: W224502, purity� 98%) were purchased

from Sigma (St. Louis, USA). Tween 80 (0.5%) was used as the solvent for the carvacrol.

Bacterial strains

Multidrug-resistant K. pneumoniae strains were obtained from urine culture of hospitalized

patients in a tertiary teaching hospital. Bacteria were grown overnight in Mueller Hinton

(MH) broth and submitted to phenotypic and molecular assay as previously described [18, 19].

This study was conducted with the approval of the Research Ethics Committee from the Uni-

versidade Federal da Grande Dourados (no. 877.292/2014 and 4.014.325/2020). This ethics

protocol contemplates informed consent from the patients from whom the strains were

isolated.

Bacterial identification and phenotypic assays

Bacterial species were identified using the Phoenix 1001 automated system (BD Diagnostic

Systems) and confirmed by matrix-assisted laser desorption/ionization-time-of-flight mass

spectrometry (MALDI-TOF) using the Microflex LT spectrometer (Bruker Daltonics, Massa-

chusetts, USA). The minimal inhibitory concentrations (MICs) were determined by broth

microdilution according to Clinical and Laboratory Standards Institute (CLSI) standards [20].

Preliminary screening for the presence of carbapenemases was performed by the modified

Hodge test (MHT) according to CLSI guidelines. Positive results were confirmed by ertape-

nem hydrolysis using mass spectrometry [21].
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PCR amplification of resistance genes

The presence of resistance genes (blaTEM-like, blaSHV-like, blaCTX-M-1-like, blaCTX–M-2-like,

blaCTX-M-8-like, blaCTX-M-14-like, blaGES-like, blaKPC-like, blaSME-like, blaNDM-1-like, blaIMP-like,

blaSPM-like, blaVIM-like, blaSIM-like, blaGIM-like, blaOXA-48-like, mgrB and mcr-1) was evaluated

using Polymerase Chain Reaction (PCR) amplification, followed by sequencing as previously

described [18, 19].

Antibacterial activity of carvacrol

Multidrug-resistant K. pneumoniae strain bacteria were grown overnight in 3 mL Mueller–

Hinton (MH) broth at 37˚C with constant shaking at 200 rpm. Optical density was measured

at 600 nm on the following day, and the cultures were then diluted to *5.0 × 105 CFU/mL in

a low-binding 96 well microtiter plate containing increasing concentrations of carvacrol (72–

0.03 mg/mL). The microtiter plates were incubated at 37˚C and the Minimum Inhibitory Con-

centrations (MIC) and Minimum Bactericidal Concentrations (MBC) of carvacrol were deter-

mined as previously described [20, 22]. Polymyxin B (4 mg/L) and amikacin (16 mg/L)

(Sigma-Aldrich) were used as controls for the assays with carbapenemase-producing and poly-

myxin-resistant K. pneumoniae strains, respectively. Polymyxin B and meropenem sensitive

control (Escherichia coli 25922) was used as a control to validate antimicrobial susceptibility

tests.

Time-kill test

The time-kill kinetics of the carvacrol at 1 × MBC was performed using the broth macrodilu-

tion (MH broth) technique following CLSI guidelines [20, 22]. Time-kill assays were per-

formed using a final inoculum concentration of approximately 5.0 × 105 CFU/mL [23]

incubated at 37˚C. Samples were collected at 0, 4, 8, 12, 24 h and 100 μL of inoculum was

spread out on to MacConkey agar plates. The plates were incubated for 24 h at 37˚C and viable

cell counts were performed by inspection of colony-forming units (CFUs) to determine the

inhibitory effects of carvacrol. The values of the bacterial counts were transformed into CFU/

mL and expressed in log to ensure normal data distribution [24]. To confirm the absence of

antimicrobial activity of solvent, the negative (water, culture medium and 0.5% Tween 80) and

positive (water, culture medium, 0.5% Tween 80 and bacterial suspension) controls were

assessed.

Animals

Seventy-eight female Swiss mice (Mus musculus), 8–10 weeks old, weighing approximately 20–

30 g (n = 6 in each group) were obtained from the Central Animal Facility of the Universidade

Federal da Grande Dourados. Forty-two were used in the lethal dose test and thirty-six in the

antibacterial activity assay of carvacrol in vivo. The mice were maintained in polypropylene

boxes with beddings of wood shaving and provided with commercial feed (Nutival1) and fil-

tered water ad libitum throughout the experiment. Light and temperature were controlled

using a 12 h photoperiod (12:12 h DL) at 22 ± 2˚C and 55 ± 10% humidity on a ventilated shelf

(ALESCO1, Monte Mor, Brazil). All the animal care or handling out following the recom-

mendations in the Guide National Council to Control Animal Experimentation (CONCEA).

In this study, we assessment of survival, lethal dose, and longevity of infected animals, for that

reason humane endpoints were not used, but all efforts were made to minimize suffering. The

experiment was only maintained for 24 hours, and the behavior was monitored every hour.

After evaluating the infection survival curve, animals that remained alive were euthanized after
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24 hours of experimentation. The study was conducted with the approval of the Research Eth-

ics Committee on Animal Use of the Universidade Federal da Grande Dourados (no. 010/

2017). The institutional animal ethics committee reviewed and specifically approved the mor-

tality predicted in the study design.

Lethal dose test

The lethal dose (LD100) and mean lethal dose (LD50) of KPC-producing K. pneumoniae in

mice was assessed as previous described [25]. The mice were injected with a 0.1 mL intraperi-

toneal aliquot of the following concentrations of KPC-producing K. pneumoniae: 1.5 ×108, 3.0

×108, 4.0 ×108, 4.8 ×108, 6.0 ×108 and 9.0 ×108 CFU/mL. The animals were observed for 24 h,

the numbers of dead mice in each group were counted and the percentage mortality was calcu-

lated. The acute toxicity of carvacrol in mice has previously been described and concentration

below of 250 mg/kg showed no mortality in mice [26].

In vivo antibacterial activity

To evaluate carvacrol’s in vivo activity, a murine infection model induced by KPC-producing

K. pneumoniae (Fig 1) was performed, as previously described [25], with the following modifi-

cations. In brief, female Swiss mice were randomly divided into treatment groups (n = 6). All

animals were injected with a 0.1 ml intraperitoneal (i.p.) aliquot of 4.0 × 108 CFU/mL (LD50).

Six groups of 6 mice were treated with the following regimens: polymyxin B (2 mg/kg, intra-

peritoneal (i.p.), 12/12 h), carvacrol (50 mg/kg, oral gavage (o.g.), 8/8 h), carvacrol (25 mg/kg,

o.g., 8/8 h), carvacrol (10 mg/kg, o.g., 8/8 h), infected control group (untreated) and a naïve

Fig 1. Time-kill curves of multidrug-resistant K. pneumoniae strains. A) Carvacrol activity against carbapenem-

resistant (KPC, NDM, CTX-M-8 and OXA-48) and polymyxin-resistant K. pneumoniae strains (POL-R). B)

Carbapenem-resistant K. pneumoniae strains (KPC, NDM, CTX-M-8 and OXA-48) tested against polymyxin B and

polymyxin-resistant K. pneumoniae strain (POL-R) tested against polymyxin B and amikacin.

https://doi.org/10.1371/journal.pone.0246003.g001
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group. Length of survival was observed in mice surviving at 24 h. All surviving animals were

anesthetized with a combination of xylazine, and ketamine (10 and 60 mg/kg, i.p., respec-

tively). Animals were euthanized by exsanguination and organs were collected for analysis.

Blood samples were collected for hematological studies using an automated hematology ana-

lyzer (Sysmex XE-3000 Hematology Analyzer, Sysmex, Japan). The white cell count (WBC)

and platelet abundance (PLT) were determined [27]. Peritoneal fluid samples were obtained

through incision and lavage with Milli-Q water by an aseptic technique. Peritoneal lavage fluid

was incubated on agar Mueller-Hinton medium supplemented with meropenem (4 mg/L) to

verify the presence of KPC-producing K. pneumoniae and for quantitative cultures,

respectively.

After collecting blood, the organs (spleen, liver, lung and kidney) were collected, and

weighed. The tissues were buffered formalin-fixed, embedded in paraffin and, sectioned at

5 μm. The sections were stained with hematoxylin and eosin and observed by light microscopy

for histopathological evaluation.

Statistical analysis

Means ± the standard error of the mean (SEM) were calculated and ANOVA/Newman-Keuls

post-hoc tests were performed using GraphPad Prism software (version 6.01; Graph-Pad Soft-

ware Inc., San Diego, CA, USA). Results with P value < 0.05 was considered significant.

Results

Four clinical carbapenem-resistant K. pneumoniae strains, and one polymyxin-resistant were

included in this study (biorepository accession numbers: KP01, KP02, KP03, KP04 and KP05).

Strains showed resistance to the antibiotics tested by broth microdilution as follows: merope-

nem (MIC >32 mg/L), imipenem (MIC >32 mg/L), ertapenem (MIC >32 mg/L) (Table 1).

Carbapenemase production was detected by MHT and MALDI-TOF. PCR amplification and

sequencing showed that blaKPC-2, blaOXA-48, blaNDM-1, blaCTX-M-8 genes were present in carba-

penem-resistance K. pneumoniae strains. The polymyxin-resistance K. pneumoniae exhibited

alterations in the mgrB coding sequence. The other genes evaluated (blaTEM-like, blaSHV-like,

blaCTX-M-1-like, blaCTX–M-2-like, blaCTX-M-14-like, blaGES-like, blaSME-like, blaIMP-like, blaSPM-like, bla-

VIM-like, blaSIM-like, blaGIM-like and mcr-1) were not detected in these strains.

Carvacrol exhibited significant inhibitory effects, with MICs/MBCs of 130 mg/L for

CTX-M-8, OXA-48, KPC, and polymyxin-resistant K. pneumoniae strains. For NDM-1 pro-

ducing K. pneumoniae, the MICs/MBCs were 260 mg/L. MIC and MBC values were equal in

the strains evaluated. No inhibitory effects were observed in the positive control, with 0.5% of

Tween 80. The survival curves of the strains among 0 and 4th hour suggest a linear drop in

Table 1. Antimicrobial susceptibility patterns for resistant K. pneumoniae.

Strains Genes MIC (mg/L) MIC and MBC (mg/L)

Carbap Pol Ami Carv

KP01 blaKPC-2 >32 (R) < 2 (S) <8 (S) 130

KP02 blaOXA-48 >32 (R) < 2 (S) <8 (S) 130

KP03 blaNDM-1 >32 (R) < 2 (S) <8 (S) 260

KP04 blaCTX-M-8 >32 (R) < 2 (S) <8 (S) 130

KP05 altered mgrB >32 (R) 8 (R) <8 (S) 130

S: susceptibility; R: resistance; Carbap: meropenem, imipenem and ertapenem; Pol: polymyxin B; Carv: carvacrol; Ami: amikacin.

https://doi.org/10.1371/journal.pone.0246003.t001
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viable cell counts (Fig 1A). All strains treated with carvacrol showed decreases in cell counts of

approximately two log10 CFU/mL. Considering the time of cell death, the results showed total

inhibition of carbapenemases-producing K. pneumoniae strains after 4 h of treatment with car-

vacrol. Polymyxin B (4 mg/L) was used as a positive control and successfully inhibited the car-

bapenemase-producing strains within 4 h (Fig 1B). Amikacin (16 mg/L) was used as a positive

control and successfully inhibited the polymyxin-resistant strain within 12 h.

KPC-producing K. pneumoniae strain was selected for the infection in animals. A dose-depen-

dent survival curve was generated using female Swiss mice that received intraperitoneal injections

of KPC-producing K. pneumoniae in different concentrations. To determine the LD100 and LD50

of KPC-producing K. pneumoniae, percent survival was observed for 24 h after infection (Fig 2).

All animals in the control group (untreated) and in the groups infected with concentrations of

1.5 ×108 and 3.0 ×108 CFU/mL of KPC-producing K. pneumoniae, survived for 24 h. Concentra-

tions of 4.0 ×108 and 4.8 ×108 CFU/mL promoted 50% (LD50) and 60% mortality, respectively.

All animals infected with concentrations of 6.0 ×108 and 9.0 ×108 CFU/mL died in 24 h (LD100).

The antimicrobial activity of carvacrol in vivo was evaluated for 24 h, using a model of

infection with by KPC-producing K. pneumoniae. Half of the control group (untreated) died

within 24 h after infection (50% mortality). However, all mice of the group treated with poly-

myxin B (2 mg/kg), and carvacrol (10, 25 and 50 mg/kg) remained alive (0% mortality) (Fig 3).

Fig 2. Survival curves mice model infected with different concentrations of KPC-producing K. pneumoniae.

Control: untreated group; concentrations of KPC-producing K. pneumoniae inoculum (1.5 ×108; 3.0 × 108; 4.0 × 108,

4.8 × 108, 6.0 × 108 and 9.0 × 108 CFU/mL).

https://doi.org/10.1371/journal.pone.0246003.g002

Fig 3. Survival curves of mice infected with KPC-producing K. pneumoniae and treated with carvacrol. Polymyxin

B and untreated (Control) were used as a positive and negative controls, respectively. �P<0.05 compared with the

control group.

https://doi.org/10.1371/journal.pone.0246003.g003
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In order to characterize the immune response of mice infected and treated with carvacrol,

white cell count (WBC) and platelet were determined. Statistical analysis revealed that the

white series of cells demonstrated significant alterations. Groups treated with carvacrol (10, 25

and 50 mg/kg) and polymyxin B (2 mg/kg) showed significant reductions in the number of

WBC (p< 0.01) (Fig 4A). All groups treated with carvacrol (10, 25 and 50 mg/kg) showed sig-

nificantly increased platelet counts (p< 0.05), a result not observed in the group treated with

polymyxin B (Fig 4B).

The induction of sepsis was confirmed by bacterial culture of murine blood samples. This

procedure demonstrated the presence of KPC-producing K pneumoniae strains in all infected

mice (100%). To better characterize the difference observed for the mortality rates between the

control and treated groups, we determined the number of CFUs in peritoneal lavage fluid. Bac-

teria was recovered from peritoneal lavage fluid of all animals, and the difference in the num-

ber of CFUs was significant for carvacrol (10, 25 and 50 mg/kg; p< 0.001) and polymyxin B

(p< 0.001) (Fig 5). There was no significant difference in organ weight. Histological analysis

showed no alterations in the organs.

Fig 4. Effects of carvacrol on hematological parameters in mice infected with KPC-producing K. pneumoniae
after 24 hours. WBC (A) and platelets (B). ���P<0.001, ��P<0.01 and �P<0.05 compared with the control group (#).

Differences among the groups were analyzed by one-way ANOVA followed by the Newman-Keuls test.

https://doi.org/10.1371/journal.pone.0246003.g004
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Discussion

K. pneumoniae is one of the most common and clinically important pathogens, causing a wide

spectrum of infectious diseases [28]. The emergence and rapid spread of KPC-producing K.

pneumoniae continue to pose serious threats for the treatment of healthcare-associated infec-

tions, with high mortality, especially in immunocompromised patients and neonates [29, 30].

Carbapenem-resistant K. pneumoniae isolates are particularly difficult to treat due to multifac-

torial resistance mechanisms that limit therapeutic options [31]. In this study, the antimicro-

bial activity of carvacrol against multidrug-resistant K. pneumoniae strains was assessed. For

this, the antimicrobial resistance mechanisms of carbapenem-resistant K. pneumoniae isolates

were analyzed, and the strains were found to acquire resistance through genes encoding carba-

penemases, including blaKPC-2, blaOXA-48, blaNDM-1, and blaCTX-M-8. The spread of carbapene-

mase-encoding genes among these pathogens is a cause of great concern, drastically

compromising the therapeutic options available for treatment [19]. Thus, developing new ther-

apies against these bacteria is a priority.

Carvacrol was investigated as a potential novel therapeutic agent and showed encouraging

inhibitory effects against carbapenem and polymyxin-resistant K. pneumoniae strains. Carva-

crol showed a low MIC and MBC value (ranging from 130 to 260 mg/L) for carbapenem and

polymyxin-resistant K. pneumoniae strains. This is a promising result, as there are limited anti-

biotics available for treating MDR Gram-negative bacteria [32]. Carvacrol exhibited inhibitory

effects (MIC = 130 mg/L) in vitro against KPC-producing K. pneumoniae, eradicating all bac-

terial cells, similar to polymyxin B and amikacin, both commercial antibiotics. Carvacrol is

described as a potential antimicrobial agent against Gram-positive and Gram-negative bacteria

[33]. However, to our knowledge, there is no description of the antimicrobial activity of carva-

crol against MDR bacteria, as shown in our study.

The antimicrobial action of carvacrol and its time-kill curves provided evidence of its rapid

action. The inhibitory effects of carvacrol could be attributed to the interactions between the

structural and functional properties of the cytoplasmatic membrane, where carvacrol interacts

Fig 5. Effects of carvacrol on the number of CFUs in peritoneal lavage fluid from infected mice after 24 hours.
���P<0.001, ��P<0.01 and �P<0.05 compared with the control group (#). Differences among the groups were

analyzed by one-way ANOVA followed by the Newman-Keuls test.

https://doi.org/10.1371/journal.pone.0246003.g005
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with the lipid bilayer and aligns itself between fatty acid chains, leading to the expansion and

destabilization of the cytoplasmic membrane [10, 13, 34]. Several mechanisms have been pro-

posed to explain the antimicrobial activity of carvacrol against bacteria [10, 35–37]. However,

further studies are required to elucidate the mechanisms of action and cell death caused by car-

vacrol in carbapenem-resistant K. pneumoniae.
In vitro results showed that carvacrol had similar antimicrobial activity against all isolates

evaluated, indicated that the activity is not restricted to resistance genes or chromosomal poly-

myxin-resistant mechanisms. Thus, considering the similar results in vitro, antimicrobial

activity of carvacrol in a murine model was evaluated with KPC-producing K. pneumoniae-
induced infection. Treatment with carvacrol significantly increased the survival of infected

mice compared to the control group (untreated). In addition, mice treated with carvacrol

showed a significant decrease in the number of CFU in the collected peritoneal lavage, similar

to the group treated with polymyxin B.

An elevated WBC count was observed in untreated mice (control group) compared to the

naïve and treated groups, suggesting infectious or inflammatory processes. Moreover, carva-

crol decreased the number of total leukocytes in the untreated group, similar to polymyxin B,

indicating that carvacrol may be efficient in the treatment of infections since leukocytes are the

first line of defense against invading pathogens. Several studies have used in vitro and in vivo
assays to demonstrate that carvacrol exerts its anti-inflammatory properties by reducing the

production of inflammatory mediators such as leucocytes, possibly through the induction of

IL-10 release [17, 35, 36, 38, 39]. In addition, a significant increase was observed in the number

of platelets in mice treated with carvacrol when compared to the untreated (control) group,

suggesting that treatment with carvacrol decreased the severity of the infection. On the other

hand, the group with polymyxin B did not show any differences in platelet numbers compared

to the control group. This may be attributed to the fact that polymyxin B has no effect on plate-

let activation and can selectively inhibit platelet aggregation [40]. In the diagnosis of sepsis, the

number of platelets is an important laboratory finding [41]. Platelets play a role in maintaining

hemostasis, modulate innate and adaptive immune responses, and low platelet count is a

marker for poor prognosis in septic patients [42]. Low platelet counts were correlated with an

increased risk of infection in patients [43]. Thus, in our study, the increase in platelet count

may be related to the reduced severity of the infection. The antiplatelet properties of carvacrol

showed that carvacrol has a moderate antiplatelet effect, inhibiting platelet aggregation [44,

45].

In addition, carvacrol has been classified as a generally recognized safe compound and is

approved for use in food items [9, 26]. Data regarding the acute and short-term in vivo effects

in different animal species are available and suggest that carvacrol does not pose a risk to

human health [36]. Nevertheless, the results of this study indicate that the use of carvacrol as a

therapeutic agent can exert significant in vitro and in vivo antimicrobial effects against KPC-

producing K. pneumoniae, increasing animal survival and significantly decreasing bacterial

loads. However, the absence of cytokine dosage is a limitation of this study. So, further studies

are needed to elucidate the role of cytokines in the antimicrobial properties of carvacrol. Also,

the linear dose-response of carvacrol was not applicable to our study. Carvacrol shows a

biphasic dose-response relationship, in which the low dose causes stimulation, and the dose

increases an inhibition. This seems to be similar to a hormetic effect. However, the hormetic

effect mechanism is extremely limited, mainly in the context of antimicrobial activities [46,

47]. Additional studies are required to elucidate the dose-response of carvacrol.

In conclusion, preliminary results in mice are hopeful and indicate that carvacrol has

potential as an antimicrobial agent against KPC-producing K. pneumoniae. However, more

PLOS ONE Antibacterial activity assays of carvacrol

PLOS ONE | https://doi.org/10.1371/journal.pone.0246003 February 22, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0246003


studies of carvacrol activity and its action mechanisms in animal models are necessary to

enhance our understanding and establish its efficacy.
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